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1 Introduction

1.1 Parallel interference cancellation for CDMA

Code-division multiple-access (CDMA) systems allow simultaneous access for

multiple users, and it makes possible to identify each user by using a uniquely

pre-assigned spreading code [1]. In the CDMA systems one has to cope with the

influence of multiple access interference (MAI), since in practice it is typically

much harder to maintain orthogonality of the spreading codes. Thus, the focal

point for improvement of performance of the CDMA user detection schemes has

been to mitigate MAI from received data. One of the most promising methods

for practical implementation is multistage parallel interference canceller (PIC)

proposed by Varanasi and Aazhang [2]. Since it performs the multiuser detection

in a stage-by stage manner, rapid convergence of the stage dynamics towards

a detection result is important. In this paper our purpose is to improve the

convergence of the detection dynamics of the linear PIC, with the aid of the

framework of the statistical neurodynamics [3, 4], a dynamical theory of memory

retrieval of the neural associative memory.

1.2 Our problem

We consider the following basic fully-synchronous K-user baseband binary phase-

shift-keying (BPSK) CDMA channel model with additive white Gaussian noise

nµ ∼ N(0, 1), (µ = 1, · · · , N) under perfect power control,

yµ =
1√
N

K
∑

k=1

sµ
kbk + σ0n

µ, (µ = 1, · · · , N) (1)

where yµ is the received signal at chip interval µ, and bk ∈ {−1, 1} and {sµ
k ; µ =

1, · · · , N} are BPSK-modulated information symbol and the signature sequece

of user k (k = 1, · · · , K), respectively. The factor 1/
√

N is introduced in order

to normalize the power of signal per symbol to 1. In the generic conventional

PIC, the tentative decisions at stage t are given as follows:

xt
k = f(ut−1

k ) = f(hk −
∑

l 6=k

Wklx
t−1
l ), (2)

where hk is the matched filter output for user k

hk =
1√
N

N
∑

µ=1

sµ
kyµ. (3)
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and Wkl, k 6= l is the correlation of the spreading codes

Wkl =
1

N

N
∑

µ=1

sµ
ksµ

l . (4)

We assume the matched filter first stage as the initial decision, which is repre-

sented by Eq. (2) as well by assuming x−1
k ≡ 0.

In this paper we deal with the linear PIC, for which f(x) = ax. Our main

purpose in this paper is to improve the performance of the linear PIC with the

help of the framework of the statistical neurodynamics [3, 4].

The linear PIC is intensively studied. The reason is as follows. As is

discussed in Appendix, by choosing the coefficient a of the decision function

f(x) = ax, the equilibrium state of the linear PIC can be made equal to the

output of the decorrelator and the MMSE detector [8]. This means that we can

obtain the decorrelating and MMSE detection results without explicitly invert-

ing the correlation matrix of spreding codes. Since calculation of the inverse of

a large matrix is computationally hard, the linear PIC has an advantage over

the decorrelator and the MMSE detector in practical point of view. However,

the convergence property of the linear PIC is not good: i t may oscillate even

when the system load is relatively small.

One of the efforts to circumvent the problem is the partial PIC method

originated by Divsalar et al. [9]. It is based on the idea that one should not

trust estimates of MAI too much in early stages, because the tentative decisions

used to compute the estimates may be less reliable. With such an idea, the

partial PIC method provides a parameter to adjust magnitudes of MAI, which

we call the partial PIC coefficients. The partial PIC method is reported to

converge more rapidly than the conventional one by appropriately choosing the

coefficients. Divsalar et al. searched the partial PIC coefficients in a heuristic

way. Guo et al. [6, 8] gave a criteria, and provided a systematic way, to obtain

the partial PIC coefficients.

We present a different way to improve the performance of the linear PIC.

Our approach has an advantage that we do not need other extra subroutines to

decide the cancellation coefficients.

2 Density evolution method

Tanaka and Okada utilized an analogical correspondence between demodulating

process in PIC for CDMA and memory retrieval process of associative memory

and applied the theory of statistical neurodynamics [3, 4] for retrieval dynamics

of neural associative memories to the detection dynamics of the PIC for CDMA,

to obtain an analytical solution describing the stage dynamics [5].

In this section we apply this theory to the linear PIC and obtain recurrence

formulas describing the stage dynamics. In the following discussion we assume

the large system limit, that means K → ∞ and N → ∞, while β ≡ K/N kept

finite. We introduce the auxialiary variables defined as

l
µ,(k)
t ≡ sµ

k



yµ − 1√
N

K
∑

l 6=k

sµ
l xt

l



 , (5)
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and make an assumption that {lµ,(k)
t ; t = 1, · · · , T } are random variables follow-

ing joint Gaussian distributions. Note that we do not ignore their correlations

between arbitrary stages. With these variables we can write

ut
k =

1√
N

N
∑

µ=1

l
µ,(k)
t , (6)

Therefore, {ut
k} also obey the joint Gaussian distributions. Let the expectation

(with respect to the random spreading codes) of l
µ,(k)
t as B

(k)
t ≡

√
NE[l

µ,(k)
t ].

Following the statistical neurodynamical theory [4, 5], we obtain the recursion

formula for B
(k)
t as follows

B
(k)
t = 1 − βUt(B

(k)
t−1 − xt−1

k ), (7)

which means that the expectation at stage t depends on the tentative decision

xt−1
k at the previous stage. Here, we note that the expectation value of randaom

variable l
µ,(k)
t should be independent of µ because all the chips are statistically

equivalent. We then decompose the expectation into a user-independent term

and the user-dependent term, as follows:

B
(k)
t = Bt + δB

(k)
t . (8)

Accordingly the recursion equation (7) is decomposed as

Bt = 1 − βUtBt−1, (9)

δB
(k)
t = −βUt(δB

(k)
t−1 − xt−1

k ). (10)

Using Eq. (10) as well as δB
(k)
0 = 0 we can calculate δB

(k)
t recursively. The

user-dependent bias term δB
(k)
t corresponds to the so-called Onsager reaction

term in the field of statistical mechanics.

In the large system limit, surviving macroscopic parameters are as follows:

Bt = E[ut
k], Ct,s = E[l

µ,(k)
t l

µ,(k)
s ], (11)

Mt = 1
K

∑K

k=1 xt
k, qts = 1

K

∑K

k=1 xt
kxs

k, (12)

Ut = 1
K

∑K

k=1 f ′(ut−1
k ), (13)

Finally the bit error rate is

BERt = Q

(

Bt−1√
Ctt

)

, (14)

where Q(x) =
∫ ∞

x
Dx and Dx = (1/

√
2π) exp(−x2/2) dx. By the theory of

statistical neurodynamics, we obtain, by temporally ignoring the user-dependent

bias, the following time evolution equations for the macroscopic quantities,

Bt = 1 − βUtBt−1, (15)

Cts = σ2
0 + β(1 − Mt − Ms + qts) + β2UtUsCt−1,s−1

+

t−1
∑

λ=0

t
∏

κ=λ+1

(−βUκ)[σ2
0 + β(1 − Mλ − Ms + qλs)]

+

s−1
∑

λ=0

s
∏

κ=λ+1

(−βUκ)[σ2
0 + β(1 − Mλ − Mt + qλt)], (16)
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Figure 1: Stage dynamics of linear PICs for a = 1. Result of simulation with
subtracting the Onsager reaction terms in algorithm (K = 400), that of conven-
tional (K = 400) simulation, and that predicted by the statistical neurodynam-
ical theory. β = 0.2, signal to noise ratio Eb/N0 = 8 [dB]. The bit error rate of
the decorrelator is also shown as a reference.

Mt+1 =

∫

f(Bt +
√

Cttz)Dz, (17)

Ut+1 =
1√
Ctt

∫

zf(Bt +
√

Cttz)Dz, (18)

qt+1,s+1 =

∫ ∫ ∫

f(Bt +
√

Ctsz +
√

Ctt − Ctsu)

f(Bs +
√

Ctsz +
√

Css − Ctsv)Dz Du Dv, (19)

where initialization should be done with B−1 and C−1−1 = σ2
0 + β.

So far, we have ignored in the analysis the user-dependent bias. Preliminary

numerical experiments on the linear PIC revealed, however, that the theory gives

a rather poor prediction to the detection dynamics of the linear PIC. Based on

the observation, we make the working assumption that the poor predictability

of the theory is caused by the absence of the user-dependent bias, and propose

a modified linear PIC algorithm, in which the user-dependent bias terms are

algorithmically subtracted. By doing the subtraction one can expect that the

detection dynamics of the proposed linear PIC algorithm is well predicted by

the theory. The proposed algorithm reads

xt
k = f(ut−1

k − δB
(k)
t−1) = a[ut−1

k − δB
(k)
t−1], (20)

where definition of ut−1
k is in Eq. (3) and the recurence formula of δB

(k)
t−1 is given

by Eq. (10) as well as δB
(k)
0 = 0.

3 Numerical result and conclusion

In this section we examine the solutions of theretical results and compare them

with the numerical simulations on the proposed linear PIC algorithm. Figure 1

shows a comparison between simulation results of the modified PIC (f(x) = x)
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and the theoretical prediction for the case of a = 1. Simulation results of the

conventional PIC and those of the decorrelator are also shown for comparison.

The theory and the simulation result on the proposed linear PIC coincide with

each other. A remarkable point is that the convergence speed of the linear PIC

was significantly improved by subtracting the user-dependent bias terms.

We have demonstrated that the subtraction of the user-dependent bias is

effective in improving convergence property of the linear PIC. It should be

mentioned, however, that the subtraction of the user-dependent bias in the

linear PIC is formally similar to applying to the linear PIC the original proposal

of the partial PIC by Divsalar et al., because the user-dependent bias in the

linear case is proportional to the decision statistics in the previous stage. The

advantage of the proposed linear PIC algorithm is its simplicity: The required

compuational cost for additional computation is almost negligible, and one does

not even have to determine values of additional parameters, such as the partial

PIC coefficients, either heuristically or analytically.

We have discussed in this paper the case of a = 1, where the equilibrium of

the linear PIC is equivalent to the output of decorrelator. From the discussion

in appendix, it is straightforward to extend the proposed method for application

to the linear PIC whose equilibrium corresponds to the output of the MMSE

detector.

Appendix: Relation between linear PIC, decor-

relator, and MMSE detector

In this appendix we discuss the relation between the linear PIC, the decorrelator,

and the MMSE detector. The stage dynamics of the linear PIC with f(x) = ax

is obtained as follows:

u
0 = h (A.1)

b̂
0

= au
0 = ah (A.2)

u
1 = h − Wb

0

= h − aWh = (I − aW )h (A.3)

b̂
1

= au
1 = a(I − aW )h (A.4)

· · ·
u

t = (I − aW + a2W 2 − · · · + (−a)tW t)h ≡ At
h, (A.5)

b
t+1 = au

t = aAt
h (A.6)

where h represents the matched filter output vector given in Eq. (3). We let

W ≡ R− I, where R is the correlation matrix of the spreading codes defined by

Rij =
1

N

N
∑

µ=1

sµ
i sµ

j . (A.7)

If the following limit exists,

lim
t→∞

At = (I + aW )−1, (A.8)

we obtain a convergent solution for the linear PIC as

b̂
∞

= sign[a(I + aW )−1
h]. (A.9)
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In this paper we dealt with the case of a = 1. As was seen in Fig. 1, both

the theoretical prediction and the improved stage dynamics of bit error rate

converged to that of the decorrelator. This fact is understood as follows. Since

I + W = R, the equilibrium state of the linear PIC with a = 1 corresponds to

the output of the decorrelator, as follows

b̂
decorr

= sign[R−1
h]. (A.10)

The MMSE detection is given by

b̂
MMSE

= sign[(R + σ2I)−1
h]. (A.11)

Therefore, If we choose a for the linear PIC as

a =
1

1 + σ2
, (A.12)

the equilibrium state of the linear PIC corresponds to the output of the MMSE

detector, because,

R + σ2I = (1 + σ2)I + W. (A.13)
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